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ABSTRACT 
The governing equation of longitudinal dispersion phenomenon of one-dimensional concentration distribution in 

fluid flow through porous media has been obtained in term of one-dimensional non-linear advection-diffusion 

equation. This equation has been converted in term of dimensionless non-linear Burger's equation with its 

derivative, and it is multiplied by small parameter  0,1  . This equation has been solved using Homotopy 

analysis method with appropriate initial and boundary condition and it is concluded that the concentration 

distribution of miscible fluids (i.e. contaminated or salt water with fresh water) decreases for given value of X 

and T > 0. the graphical and numerical presentation is derived using Maple coding.  
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I. INTRODUCTION 
Groundwater and solute transport in coastal 

subsurface environments have significant 

implications for studying physical, chemical and 

biological processes in coastal area. The problem of 

solute dispersion during ground water movement has 

attracted interest from the early days of this century 

[1], but it was only since 1905 in general topic of 

hydrodynamic dispersion or miscible displacement 

becomes one of the more systematic studies. The 

phenomenon of the dispersion has been receiving 

good attention from hydrologist, agriculture, 

environmental, mathematicians, chemical 

engineering and soil scientists. The specific problem 

of fluid mixing in fixed bed reactors has been 

investigated by Bernard and Wilhelm [2]. Kovo [3] 

has worked with the parameter to be modeled in the 

longitudinal or axial dispersion coefficient D in 

chemical reactors model. In ground water hydrology 

intrusion of sea water into the coastal aquifers is an 

example of hydrodynamic dispersion. Saltwater 

intrusion as shown in figure 1 occurs where too much 

freshwater is pumped out of the ground and is 

replaced by brackish and eventually saltwater. The 

phenomenon of miscible displacement can be 

observed in coastal areas, where the fresh water is 

gradually displaced by sea water and a transition 

zone develops between fresh water and sea water. 

The transition zone between salt and fresh water is  

 

 

often quite narrow in comparison with the overall 

thickness of the aquifer and for computational 

purpose we may consider it to be a sharp interface 

[4], such a sharp interface approximation serve as 

justification for treating saltwater intrusion into 

coastal aquifers as a multiphase flow. 

 

 
 

Figure 1: Coastal area applications: Salt water 

intrusion 

 

In the case of salt water intrusion, over 

pumping from an aquifer creates a flow imbalance 

within an area, this results in salt water intruding into 

and polluting a fresh water supply. Both of the phases 

are of different salinity. Across this zone the 
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concentration of water varies gradually from that of 

fresh water to that of sea water.  This type of problem 

of salinity is shown at Saurashtra area of Gujarat due 

to the intrusion of seawater in the coastal aquifers and 

seawater ingress. At the same time, rising 

groundwater levels in the command area of Mahi 

irrigation scheme cause soil salinity problems in 

South Gujarat (India) [5]. Another example is when 

water of one quality is introduced into an aquifer 

containing water of another quality by various 

artificial recharge methods (surface spreading 

techniques or injection through wells). Presently 

efforts are being made by the environmentalists to 

dispose the atomic waste products, born from nuclear 

reactors, and dump it inside the ground by using the 

same phenomenon of displacement. 

The fundamental interest of this paper is to find 

concentration of contaminated or salt water in soil. 

The term concentration expresses a measure of the 

amount of a substance within a mixture. The 

processes concentration distribution can be divided 

into two parts: transformation and transport. 

 

1. Transformation: It refers to those processes that 

change a substance of interest into another substance. 

The two basic approach of transformation are 

physical (e.g. radioactive decay) and chemical 

reactions (e.g. dissolution).  

 

2. Transport: It refers to those processes which 

move substance through the hydrosphere and 

atmosphere by physical means i.e. a substance goes 

from one location to another.  

The dispersion process is associated with molecular 

diffusion and mechanical dispersion. Molecular 

diffusion is the spreading caused by the random 

molecular motion and collisions of the particles 

themselves and mechanical dispersion is the 

spreading of a dissolved component in the water 

phase by variations in the water velocity (i.e. flow of 

a fluid). These two basic mechanisms molecular 

diffusion and mechanical dispersion cause a 

concentration front of fluid particles to spread as it 

advances through the porous media.  These two 

combine processes of molecular diffusion and 

mechanical dispersion are known as hydrodynamic 

dispersion or dispersion.  

 

 
Fig. 2: The geometry of microscopic pores, where 

velocity distributions in different pore size. 

 

When groundwater flows, the actual microscopic 

velocity in the pores varies widely in space even 

when the Darcy macroscopic velocity is constant. 

The result is more intense mixing, which is called 

hydrodynamic dispersion. Fig. 2 gives a schematic 

view of the trace movement on macroscopic level. 

This phenomenon can be observed in coastal areas, 

where seawater  gradually displaced the fresh 

waterbeds. An important role is played by this 

phenomenon in the seawater intrusion into reservoir 

at river mouths and in the underground recharge of 

groundwater. 

Several investigators have evaluated the dependence 

of the dispersion parameter D on the velocity u that 

appears in one -dimensional advection – diffusion 

equation.  

 

 ,
C C

D u x t C
t x x

   
  

   

 

 

In this analysis, Taylor [6] found dispersion 

coefficient D proportional to square of uniform 

velocity (u
2
); Bears and Todd [7] suggests that D is 

directly proportional to u; Scheiegger [8] in his study 

of the possible relationships summarizes: firstly, D 

=αu
2
, where α, the porous medium constant, is 

derived by a dynamic procedure valid when there is 

enough time in each flow channel for appreciable 

mixing to take place by molecular transverse 

diffusion. Secondly, D = βu, where β is another 

constant of the porous medium, that is derived by a 

geometrical procedure relevant where there is no 

appreciable molecular transverse diffusion from one 

streamline into another. In light of these, the 

dispersion problem has been made two-dimensional 

considering transverse diffusion. Freeze and Cherry 

[9] advocates, the dispersion parameter is 

proportionate to the power n of the velocity; where 

the range of power arrays between 1 and 2. Most of 

the works reveal common assumption of 

homogeneous porous media with constant porosity, 

steady seepage flow velocity and constant dispersion 

coefficient. For such assumption, Ebach and White 

[10] studied the longitudinal dispersion problem for 

an input concentration that varies periodically with 

time. Hunt [11] applied the perturbation method to 

longitudinal and lateral dispersion in no uniform 

seepage flow through heterogeneous aquifers. 

Saffman and Taylor [12] showed that if dispersion is 

mainly due to convective mixing (kinematic and 

dynamic dispersion process) but there is small but 

finite effect of molecular diffusion, the dispersion 

coefficients (longitudinal and transverse) are related 

to the mean flow velocity.  Rudaria and Chiu-On Ng 

[13] has provided analytical study of the dispersion in 

fluid-saturated deformable or non deformable porous 

media with or without chemical reaction, considering 

a series of particular cases selected through different 

practical problems using different dispersion models. 

Mehta and Patel [14] applied Hope-Cole 
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transformation to unsteady flow against dispersion of 

miscible fluid flow through porous media. Eneman et 

al. [15] provided analysis for the systems where fresh 

water is overlain by water with a higher density in 

coastal delta areas. Meher [16] and Mehta [17] 

studied the Dispersion of Miscible fluid in semi 

infinite porous media with unsteady velocity 

distribution using Adomain decomposing method. 

Moreira et al (2006, 2009) [18], [19] presented an 

analytical solution for the non-stationary two-

dimensional advection-diffusion equation to simulate 

the pollutant dispersion in the planetary boundary 

layer. They solved the advection-diffusion equation 

by the application of the Laplace transform technique 

and the solution of the resulting stationary problem 

by the generalized integral Laplace transform 

technique (GILTT). For temporally and spatially 

dependent dispersion problems, the analytical 

solutions were obtained by Jaiswal et al (2009, 2011) 

[20-21], Yadav et al. [22] has obtained solution for 

one-dimensional advection-diffusion equation with 

variable coefficients in a longitudinal domain. It was 

demonstrated by Dong-mei et al. [23] that two-phase 

flow concept is the basis for unsteady seepage 

velocity that influences an infiltration of the rainfall 

and water level variation with seepage flow. An exact 

solution of the linear advection-dispersion transport 

equation with constant coefficients was introduced by 

Perez et al. [24] for both transient and steady state 

regimes and classic version of Generalized Integral 

Transform Technique (GITT) was used in solving 

analytically. Three simple time-dependent inlets 

conditions comprising regularly, rapidly declining 

and sinusoidally periodic input functions; were used 

to demonstrate the applicability of the solution by 

Chen and Liu [25] while studying a broader 

analytical solution for one-dimensional advection-

dispersive transport infinite spatial domain.  

The present paper discusses the approximate 

analytical solution of the nonlinear differential 

equation for longitudinal dispersion phenomenon 

which takes places when miscible fluids 

(contaminated or salt water) mix in the direction of 

flow. The mathematical formulation of the problem 

yields a nonlinear second order parabolic partial 

differential equation. The analytical solution has been 

obtained by using Homotopy analysis method. The 

graphical representation along with its physical 

interpretation is also discussed.  

the introduction of the paper should explain the 

nature of the problem, previous work, purpose, and 

the contribution of the paper. The contents of each 

section may be provided to understand easily about 

the paper. 

 

II. STATEMENT OF THE PROBLEM 
Considering dispersion of contaminated or 

salt water with concentration  ,C x t  flowing in x-

direction, dispersion taking place in porous media 

saturated with fresh water. Hence it will be miscible 

fluid flow through homogeneous porous media. 

Therefore, it will obey the Darcy’s law, which dates 

back to 1856 [1]. The following assumptions have 

been made for present analysis (Schidegger 1954, 

Day 1956, deJony 1958) [26, 27, 28]: 

 The medium is homogenous. 

 The solute transport across any fixed  plane, 

due to microscopic velocity variation in the flow 

tube, may be quantitatively expressed as the product 

of a dispersion coefficient and the concentration 

gradient. 

 

To find concentration of the dispersing contaminated 

or salt water as a function of time t and distance x, as 

the two miscible fluids flow through homogeneous 

porous media. Since the mixing (contaminated or salt 

water and fresh water) takes place both longitudinally 

and transversely. Dispersion adds a spreading effect 

to the diffusion effects. Since dispersion is driven by 

the mean flow of the water, the dispersion 

coefficients related to the characteristic length or pore 

length L. In three dimensions, the spreading caused 

by dispersion is greater in the direction of the flow 

than in the transverse direction. One dimensional 

treatment of these systems avoids treatment of a 

radial or transverse component of dispersion. We 

only consider the dispersion phenomenon in the 

direction of flow (i.e. longitudinal dispersion), which 

takes places when miscible fluids flow in 

homogeneous porous media.  

 

III. MATHEMATICAL STRUCTURE 
The dispersion equation that describes the 

concentration distribution of miscible fluids (i.e. 

contaminated or salt water with fresh water) flow in 

homogeneous porous media can be written as (Freeze 

and Cherry [9] and Bear [29]), 

 

 
1

,
C F C

D u x t C
t t x x





     
   

    

                            (1) 

 

where C is the concentration of dispersing 

contaminated or salt water, F is the concentration in 

the solid phase,   is porosity of medium, u is 

seepage velocity of contaminated or salt water and D 

is the dispersion coefficient presenting, at the 

macroscopic scale, which presumably includes the 

effect of both molecular diffusion and mixing in the 

axial direction, however molecular diffusion is 

negligible due to very low seepage velocity. In 

equation (1) dispersion coefficient D and seepage 

velocity u may be constant or functions of x and t and 

0D  [30].   

Let 
xu  is the component of seepage velocity of 

contaminated or salt water along the x axis, then the 
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non-zero components will be
11 2

0

L

L
D D

C
 

, 

(coefficient of longitudinal dispersion and L is length 

of dispersion in flow direction) and 

22 TD D (coefficient of transverse dispersion) and 

other 
ijD  are zero. From this assumption the equation 

(1) becomes, 

 
2

2

1
L x

C F C C
D u

t t x x





    
  

   

                  (2) 

 

Lapidus and Amundson [30] considered two cases as, 

 

1 2F K C K               (3) 

1 2

F
K C K F

t


 



             (4) 

 

for equilibrium and non-equilibrium relationship 

between the concentrations in the two phases, 

respectively. Using equation (3) in equation (2) can 

be written as, 

 

  2
1 2

2

1
L x

K C KC C C
D u

t t x x





    
  

   

   

or 
2

2L x

C C C
R D u

t x x

  
 

  

                          (5) 

 

where 
1

1
1R K





 
  
 

 is a retardation factor 

describing solute sorption, 
1K  and 

2K are empirical 

constants, 
xu  is the component of seepage velocity 

of contaminated or salt water in x direction which is 

function of x and t and 0LD  . It has been observed 

that  the component of seepage velocity xu (along 

with the x axis)  is related with concentration of 

contaminated or salt water dispersion. We assume 

that seepage velocity  ux is directly proportional to  

 ,C x t [17]. 

 

0

,
x

C x t
u

C


                           (6) 

 

where 
01 C  is constant of proportionality and the 

guess approximation of the concentration of 

contaminated or salt water dispersion. Following new 

independent variables has been introduced to 

simplify the equation (5) as, 

0 ,
C x R

X and T t
L L

 
 

then equation (5) can be written as,  
2

2

C C C
C

T X X


  
  

  

            (7) 

where
2

0LD C

L
  and  0,1 ,0 1,0 1X T                           

Since concentration C is decreasing as distance X 

increase for T > 0. It appropriate to choose guess 

value of concentration solution as, [16] 

   , ; 1 X mX T T e                (8) 

Hence, the equation (7) together with boundary 

condition (8) represents the governing non-linear 

partial differential equation for concentration of the 

longitudinal dispersing material of miscible fluids 

flowing through a homogeneous porous medium. 

 

IV. THE  SOLUTION  WITH  HOMOTOPY 

ANALYSIS  METHOD 
For one dimensional non-linear partial differential 

equation for longitudinal dispersion phenomenon, we 

assumed that the concentration  ,C X T  of the 

dispersing contaminated or salt water, at time T=0 is 

expressed as, 

   , , 1 X mX T T e   
            (9)

 

where 0  for the concentration of contaminated or 

salt water for time T = 0.   

Now we apply the Homotopy analysis method into 

the longitudinal dispersion phenomenon during 

miscible fluid flow through homogeneous porous 

media. We consider the equation (7) as nonlinear 

partial differential equation as 

 , ; 0X T    
           (10) 

Where is a non-linear operator,  , ;X T  is 

considered as unknown function which represent the 

concentration C of the dispersing  contaminated or 

salt water at any distance X for given time 0T  , for 

0 1  . We use auxiliary linear operator 

 
 , ;

, ;
X T

X T
T





    

and initial approximation of 

concentration of dispersing contaminated or salt 

water    0 , 1 XC X T T e   to construct the 

corresponding zero
th

 order deformation equation. As 

the auxiliary linear operator   which 

satisfies  4 0C  , where 
4C is arbitrary constant.  This 

provides a fundamental rule to direct the choice of 

the auxiliary function  , 0H X T  , the initial 

approximation  0 ,C X T , and the auxiliary linear 

operator , called the rule of solution expression. 

Establish the zero-order deformation equation of 

longitudinal dispersion phenomenon as [31], 

         01 , ; , , , ;X T C X T H X T X T                 
(11) 

where  0 ,C X T denote an initial guess value of 

concentration of dispersing contaminated or salt 

water of the exact solution  ,C X T which is our 

purpose to find it. Since 0  is an auxiliary 

parameter and  , 0H X T  is an auxiliary function such 

that  0,1  is an embedding parameter. The auxiliary 
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parameter  is providing a simple way to ensure the 

convergence of series. Thus it renamed  as 

convergence control parameter [31]. Let  an 

auxiliary linear operator with the property that, 

 , ; 0X T    
 when  , ; 0C X T    

when 0  , the zero-order deformation equation 

(11) becomes 

   0, ; , 0X T C X T    
          (12) 

Which gives the first rule of solution expression and 

according to the initial guess    0 , 1 XC X T T e  , it is 

straightforward to choose 

   0, ;0 ,X T C X T           (13) 

when 1  , since 0 ,  , 0H X T  the zero-order 

deformation equation (7) is equivalent to  

 , ; 0X T    
                         (14) 

which is exactly the same as the original equation 

(10) provided 

   , ;1 ,X T C X T                          (15) 

According to (13) and (15) as the embedding 

parameter   increases from 0 to 1, solution 

 , ;X T  varies continuously from the initial guess 

value of the concentration  0 ,C X T  of dispersing 

contaminated or salt water to the solution  ,C X T and 

its solution is assumed by expanding  , ;X T   in 

Taylor series with respect to  as, 

     
1

, ; , ;0 , m

m

m

X T X T C X T 




 
         (16) 

Where, 
 

 

0

, ;1
,

!

m

m m

X T
C X T

m












         (17) 

i.e. the concentration of dispersing contaminated or 

salt water is function of distance X and time T for 

any parametric value  is expressed as, the 

concentration of dispersing contaminated or salt 

water at time 0T  ,  0 ,C X T  and sum of 

concentration of dispersing contaminated or salt 

water  1 ,C X T ,  2 ,C X T ,…at different time T for 

different value of parameter  . Here, the series (16) 

is called Homotopy-series; the series (16) is called 

Homotopy series solution of  , ; 0X T      
and 

 ,mC X T  is called the m
th

-order derivative of . 

Auxiliary parameter in Homotopy-series (16) can 

be regard as iteration factor and is widely used in 

numerical computations. It is well known that the 

properly chosen iteration factor can ensure the 

convergence of Homotopy series (16) is depending 

upon the value of , one can ensure that convergent 

of Homotopy series, solution simply by means of 

choosing a proper value of  as shown by Liao [31, 

32,33, 34].  If the auxiliary linear operator, the initial 

guess, the auxiliary parameter , the auxiliary 

function  ,H X T are so properly chosen, the series 

(16) converges at 1  . 

Hence the concentration of dispersing water can be 

expressed as, 

     0

1

, , ,m

m

C X T C X T C X T




 
         (18) 

This must be one of solution of original non-linear 

partial differential equation (7) of the concentration 

of dispersing contaminated or salt water problem in 

homogeneous porous medium.  

According to the definition (17), the governing 

equation can be deduced from the zero-order 

deformation equation (11), define the vector 

      0 1, , , ,... ,m nC C X T C X T C X T  

Differentiating equation (11) m-times with respect to 

the embedding parameter   and then setting 

0  and finally dividing them by !m , we have the 

so-called m
th

 order deformation equation of the 

concentration  ,C X T  will be as, [31] 

       1 1, , , , ,m m m m mC X T C X T H X T R C X T      
      (19) 

Where 

 
 

 1

1 1

0

, ;1
, ,

1 !

m

m m m

X T
R C X T

m








 



   
 

        (20) 

And 0, 1

1, 1
m

m

m



 



                         (21) 

It should be emphasized that  ,mC X T for 1m  , is 

governed by the linear equation (20) with the linear 

boundary condition that came from original problem, 

which can solved by symbolic computation software 

Maple as bellow. The rule of solution expression as 

given by equation (8) and equation (11), the auxiliary 

function independent of   can be chosen 

as  , 1H X T   [31]. 

According to (15) and taking inverse of equation (19) 

the equation (20) becomes, 

     1

1 1, , , ,m m m m mC X T C X T R C X T 

 
   
 

        (22) 

 
 

 1

1

0

, ;1
, ,

1 !

m

m m m

X T
R C X T

m












   
 

        (23) 

In this way, we get  ,mC X T  for m=1, 2, 3, … 

successively by using Maple software as,    

   2 2

1

1
, 2 6 3 12 6

6

X X XC X T T T T Te e e              (24) 

 

4 3 3 2

2 2 2

3

2 2 2 2

2 2

12 35 60 120

10 200 90 3001
,

60 90 120 60 120

20 60 30 60

X

X X X

X

X X X X

X X X X

T T e T T

T e T e T T e
C X T T e

T e e e e

T e Te Te e



    
 
    

     
 
              

(25)  

.... 

Using initial guess value of concentration from 

equation (8) and successive  
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 



       

    
 
    

     
 
            

(26) 

 

V. NUMERICAL AND GRAPHICAL 

SOLUTION 
Maple coding has been used to obtain 

numerical and graphical presentations of equation 

(26). Fig. 3 represents the graphs of concentration 

 ,C X T  vs. distance X, and time T = 0.1, 0.2, 0.3, 0.4, 

0.5 is fixed, fig. 4 represents the graphs of 

concentration  ,C X T  vs. distance X, and time T = 

0.6, 0.7, 0.8, 0.9, 1.0 is fixed and Table I indicates the 

numerical values of concentration for different time T 

and distance X. The fig. 3 & 4 and the table 1, 

indicate the graphical representations of the 

longitudinal dispersion phenomenon of the 

concentration.  The convergence of the Homotopy 

series (16) is dependent upon the value of 

convergence-parameter  [31, 32, 33, 34]. Therefore 

we choose proper value of the convergence-

parameter 0.1   
to obtain convergent Homotopy-

series solution [31]. 

Table I : Concentration of the contaminated or salt 

water  ,C X T
 

 

 
Figure 3: Represents concentration of contaminated 

or salt water  ,C X T  vs. distance X and time T for 

auxiliary parameter 0.1   and auxiliary function 

( , ) 1H Z T  [31] for 0 0.5, 0 0.5X and T     

 
Fig 4: Represents concentration of contaminated or 

salt water  ,C X T  vs. distance X and time T for 

auxiliary parameter 0.1   and auxiliary function 

( , ) 1H Z T  [31] for 0.5 1, 0.5 1X and T     
 

VI. CONCLUSION AND DISCUSSION 
The equation (26) represents concentration 

of the miscible fluid (i.e. contaminated or salt water 

with fresh water) for any distance X and time 0T   

using Homotopy Analysis Method. It converges for 

embedding parameter 1   and for auxiliary 

parameter 0.1   which is expressed as negative 

exponential term of X and time 0T  . An assumed 

value of concentration C will be a value of the exact 

solution for 0 1X  ,and 0 1T  . Fig. 3 represents the 

solution for concentration C vs. distance X and time 

T for given X= 0.1, 0.2, 0.3, 0.4 and 0.5 fixed, it 

shows that concentration of the contaminated or salt 

water is decreasing as distance X increasing for 0T  . 

From fig. 3 it can conclude that for 

0.1T  concentration of contaminated or salt water is 

decreasing as distance X increasing and when time is 

increasing and due to different deformation added to 

C, the concentration of contaminated or salt water is 

successively decreasing exponentially. Since the 

equation (7) is one-dimensional diffusion type 

Burger’s equation for longitudinal dispersion 

phenomenon, the solution is graphically as well as 

physically consistent with phenomenon. Fig. 4 

represents the solution for concentration C vs. 

distance X and time T for given X= 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0. The concentration of contaminated or salt 

water is also decreasing for different time T for given 

fix value of X. The concentration of contaminated or 

salt water at 0.1X  is decreasing for different time T. 

After distance X, the concentration of contaminated 

or salt water is also decreasing with respect to 

different time T, this resembles the scenario of X 

above. Referring both fig. 3 and 4, with derived 

analytical result (26), it is concluded that the 

concentration of the contaminated or salt water is 
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decreasing when distance X as well as time increases 

using Homotopy Analysis Method. This 

mathematical model is consistent with physical 

phenomenon of the longitudinal dispersion of 

contaminated or salt water in homogenous porous 

medium. 
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